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Abstract

A large literature has estimated the effects of climate change on agricultural yields, but rarely tests whether changes in
yields translate directly into changes in household welfare. Such assumptions elide the rather large literature on resilience
to climate and other shocks. This work demonstrates how satellite derived yield data (GCVI) can analyze the relationship
between agricultural productivity and household welfare. We use remotely-sensed vegetation indices as a proxy for crop
yields as well as a granular household level dataset from 85% of Mali’s administrative communes between 2011 and 2019.
Calculating commune-level indices for each growing season, we are then able to estimate their effects on household level
expenditures. We find that changes in yields have a statistically significant effect on overall household expenditure as well
as other expenditure categories (food, leisure, etc.). This effect is, however, relatively muted, with GCVI to expenditure
elasticities in the range of 0.03 - 0.45. Such low expenditure elasticities for changes in yields indicates a large degree of
climate resilience. Having demonstrated the use of vegetation indices in measuring household welfare, we then demonstrate
their superiority to nightlight measures as proxies for household welfare in rural areas of Africa. We draw conclusions for

policy makers and for researchers interested in using remotely sensed data for climate change and resilience research.



1 Introduction

The literature has established that shifts in climate can result in changes in agricultural yields, and that such variation
will most negatively effect small-holder farmers in Sub-Saharan Africa (Ortiz-Bobea et al. 2021; Liu et al. 2016). Recent
reviews suggest that we still have much to learn about the welfare impacts of changes in agricultural output on those
that rely on farming to make a living (Gassner et al. 2019). While a large literature has also shown the importance of
agricultural productivity in the economies of Sub-Saharan Africa (Dercon and Gollin 2014), there is a notable lack of
reliable agricultural yield data across the continent (Carter et al. 2017). The imperative of increasing African house-
hold resilience to climate change along with inadequate yield data, poses a quandary for researchers. While some recent
work has shown the potential of remote sensing of vegetation to provide a usable proxy for agricultural yields (Lobell et
al. 2019) at a small local scale, we do not yet know if they can relate household resilience to agricultural yield shocks.
Similarly, how do vegetation indices compare to another commonly used remote sensing measure of welfare in Africa,

nightlight data?

This work tests the efficacy of employing remotely sensed agricultural data as a proxy for yields across Mali, and
tests how yields relate to household consumption and resilience. We provide comparisons across multiple popular veg-
etation indices, focusing on the Green Chlorophyll Vegetation Index (GCVI). We then show that remotely sensed yield
proxies can be used to estimate the relationship between agricultural output and rural household expenditures. We em-
ploy a repeated cross-section of Malian household data covering the period 2011-2019, comprising rural households from
nearly 600 of Mali’s 704 administrative communes. We then test whether nightlight data, VIIR, which has commonly
been used to measure incomes in difficult to measure areas, is correlated with our yield measures or with rural Malian

household expenditures.

Our results show first that remotely sensed vegetation indices provide good proxies for agricultural yields and that
differences between indices are relatively minor. Then our key regression results relating vegetation indices to house-
hold expenditures show remarkable levels of resilience among Malian households to yield shocks. They demonstrate
that while increases in yields are associated with increases in per-capita expenditures for rural households, the elastic-
ity of overall consumption expenditure in our preferred vegetation index is noticeably less than one (roughly 0.03). We
demonstrate effects of vegetation index measures of yields on both food and non-food expenditures, with non-food be-
ing more elastic, driven primarily by discretionary goods such as clothes and communications (cellphone minutes). Our
results are robust to alternative specifications of the vegetation indices and expenditures. Finally, our tests of whether
VIIR nightlights data are correlated with vegetation indices or expenditures find low correlations of VIIR with vegeta-

tion indices and negative or zero correlations with most expenditure categories.

Our findings are relevant for the study of climate change and its impacts on human welfare. The methodology we

demonstrate has the potential to provide new insights about climate-induced changes in agricultural output in Sub-



Saharan Africa and other parts of the world where there is a lack in-field measures of agricultural production. Specif-
ically, the remotely sensed indices can provide better coverage of yields and estimates of incomes than can be done with
available field data. Combined with household datasets, these remotely sensed products can help researchers and poli-
cymakers better understand how climate-induced changes to agriculture will impact the welfare of households in a va-
riety of contexts. Our work also adds to a literature seeking to measure economic growth in poorly measured areas and

highlights the need for caution in interpreting nightlight data as a measure of welfare in rural Africa.

1.1 Agricultural Output and Household Welfare

The relationship between agricultural output and household welfare has long been a staple of the development liter-
ature. The literature has established that shifts in climate can result in changes in agricultural yields, and that such
variation is most likely to hit small-holder farmers in Sub-Saharan Africa particularly hard (Ortiz-Bobea et al. 2021;
Liu et al. 2016). However, what is still not well understood is the extent to which changes in agricultural output affect
the welfare of those who rely on farming to make a living (Gassner et al. 2019). Furthermore, the impact of climatic
changes on crop production are likely to vary considerably from one region to the next. For example Ortiz-Bobea et
al. (2021) demonstrate that while Anthropogenic Climate Change (ACC) has reduced overall global agricultural pro-

ductivity since 1961, the effects have been far worse for warmer regions such as Sub-Saharan Africa (SSA).

A large related literature has developed measuring the resilience of various people to climate change (see e.g. Fel-
bermayr et al. (2022)). Recent developments in this literature (Barrett et al. 2021; Upton, Constenla-Villoslada, and
Barrett 2022) have found little consensus on the best measures of resilience, nor consistent definitions of what resilience
would mean. In that context measuring household expenditure, as we do here, has emerged as a reasonable default op-
tion for measuring household resilience. Some studies such as Macours, Premand, and Vakis (2022) show that diversi-
fication of economic activities within the household can reduce vulnerability to climate risk, while others such as Pre-
mand and Stoeffler (2022) have shown how cash transfers can mitigate the effects of climate shocks. Similarly, a study
of smallholder farmers in rural Ethiopia, Mekonnen and Kassa (2019) found that their “Adaptive Capacity” was posi-
tively correlated with their total income from farm and non-farm activities. While there is evidence of adaptation and
resilience at the individual level in some African contexts, work by Baarsch et al. (2020) raises questions about African
countries’ ability to mitigate climate change under most future climate scenarios. Our work, focusing on households in

a single Sahelian country, can add to our understanding of the degree of resilience to changes in agricultural yields.

This work also contributes to a literature on how to measure development and income in far flung places, especially
the African continent. A recent work by Angrist, Goldberg, and Jolliffe (2021) highlights the methodological difficulties
in measuring economic growth in developing countries. That work finds that measuring development or income in rural
areas of developing countries is particularly fraught. Recent work by Mellon (2024) demonstrates that the commonly
used rainfall IV for income is unlikely to be a good measure in most places. Similarly a large literature has emerged us-

ing remotely sensed nightlights to measure incomes across the world (see reviews in Gibson et al. (2021) and Levin et



al. (2020)). Bluhm and Krause (2022) show that luminosity measures can be used as a reliable proxy for economic ac-
tivity in urban areas of Sub-Saharan Africa. While night lights shows some promise for urban areas, much of the liter-
ature has found it wanting in measuring economic outcomes in rural areas (Gibson et al. 2021). In contrast, the GCVI
measures of agricultural yields studied in this work provide a measure that is correlated with household expenditures

for rural areas that are dependent on agricultural production for their livelihoods.

1.2 Climate Change and Agricultural Yields

This work also builds on and contributes to the significant previous work studying the relationship between changes in
climate, and changes in agricultural output. First, we base our Vegetation Index (VI) proxies of agricultural yields on
established work in the literature that use VIs to predict crop production. The continent-wide coverage of the vegeta-
tion indices can help expand the reach of studies of climate and yields, which have often contented themselves to coun-
trywide measures (Schlenker and Lobell 2010) or areas of well measured yields such as experiment stations (see e.g.,
Lobell et al. (2011)). A large variety of other work has used rainfall as a proxy for yields and therefore income. Mel-
lon (2024) provides a thorough and convincing critique of the uses of rainfall as a proxy for income. A key issue is that
there is not a one-to-one correspondence between rainfall and yields and sometimes even a negative one. The remotely

sensed vegetation indices used in our work provide an alternative.!

Studies such as those by Becker-Reshef et al. (2010) and Panek and Gozdowski (2021) have already demonstrated
the ability of some remotely sensed VI data to be used for predicting Winter Wheat yields in Kansas and Ukraine, and
cereals, wheat, and barley in Europe, respectively. Even as these techniques have become popular in the industrialized
world, there still remains a lack of work using remote sensing to evaluate crop performance in many developing coun-
tries, including much of Sub-Saharan Africa (Burke and Lobell 2017). In many industrialized countries, agricultural
lands are characterized by large field sizes that can easily be analyzed, along with reliable ground measures that can
evaluate satellite derived data (Burke and Lobell 2017; Farmaha et al. 2016; Lobell 2013). On the other hand, small-
holder agricultural systems are more difficult to analyze because of a lack of ground data, as well as difficulty in accu-
rately characterizing field sizes (Burke and Lobell 2017). This is particularly problematic for Sub-Saharan Africa, where
around 80% of the farmers are smallholders (Ameyaw and Nyamu 2016). We apply the remote-sensing approach with
a chlorophyll-based measure that has been shown to correlate well with features that are predictive of crop yields in

smallholder systems such as those in Mali (Lambert et al. 2018; Lobell 2013).

1.3 Vegetation Indices as a Proxy For Agricultural Yields

This study also contributes to the sizable literature on the predictive power of VIs for agricultural yields (Lobell et

al. 2019). We make use of the Green Chlorophyll Vegetation Index(GCVI) as our preferred yield proxy, and conduct

1. While rainfall has an advantage of being purely exogenous to human effort, the vegetation indices do include human efforts in their
measure of yields. As such they are better to measure yields, though not recommended if one wants a purely exogenous instrument as is
often the case with research using rainfall.



robustness checks with three other indexes: The Normalized Difference Vegetation Index (NDVI), the Enhanced Veg-

etation Index (EVI), and the Green Normalized Difference Vegetation Index (GNDVI). GCVI, developed by Gitelson,
Gritz, and Merzlyak (2003) is a measure of leaf chlorophyll concentration, which is strongly related to plant photosyn-
thetic capacity, and therefore productivity Bausch, Halvorson, and Cipra (2008). NDVI, which measures the greenness
of a particular region, is the most frequently used vegetation index in the economics literature. NDVI has been shown

to have a strong relationship with plant photosynthetic capacity (Sellers 1985).

While NDVT has been the most commonly used vegetation index, we follow Burke and Lobell (2017) and use GCVI
as our preferred index for predicting yields. Burke and Lobell (2017) studied the effectiveness of various VIs in predict-
ing yields in western Kenya finding that GCVI significantly outperformed NDVI and EVI in predicting maize yields.
One potential reason for this given by the authors, is that while GCVT relies on reflectance in the Near-Infrared and
Green Wavelengths, NDVI and EVI incorporate reflection from the red wavelengths, and reflectance at green wave-
lengths is known to be more responsive than red wavelength reflection to changes in leaf chlorophyll concentration.
Lambert et al. (2018) made use of GCVI when categorizing croplands in Mali, and found that the Leaf Area Index
(LAI) was the strongest predictor of smallholder yields in Mali’s cotton belt. According to Vifia et al. (2011), chloro-
phyll based measures are the most strongly correlated with LAI (a strong predictor of photosynthetic activity), and
suggested that in some circumstances, GCVI may be a better estimate of the photosynthetic component of LAT (the
most relevant component for agricultural productivity) than other methods. Wahab, Hall, and Jirstrém (2018) stud-
ied the predictive power of drone calculated GNDVT to predict maize yields in Ghana, finding that GNDVI better pre-
dicted yields (r = .393) than in-field measures (r = 0.259). GNDVTI is a modified version of NDVT that is more sensi-
tive to chlorophyll concentration (Bausch, Halvorson, and Cipra 2008), and is effective capturing nutrient deficiencies in

plants (Burke and Lobell 2017).

1.4 Climate Change and Household Welfare

This work also contributes to the literature examining the relationship between climate change and changes in the wel-
fare of households in developing country contexts. With climate change expected to most negatively impact warmer cli-
mates, particularly Sub-Saharan Africa (Liu et al. 2016), this is a very pressing concern. In Sub-Saharan Africa, where
cereal yields are already 47% below those of those of the rest of the world Gassner et al. (2019), there is a pressing need

to improve agricultural output and household welfare.

Our work relates changes in yield proxies in communes across the country of Mali to household level expenditures
over the course of nearly a decade. The intensity of changes in the level, and composition of expenditure give a picture
of the extent to the resilience and adaptability of households to yearly changes in both agricultural conditions. Another
study conducted within this area was that by Tesfaye, Blalock, and Tirivayi (2020), which investigated the impact of
“Climate-Smart” innovations for farming on rural poverty in Ethiopia. They found that conservation agriculture inter-

ventions with minimum tillage and cereal-legume associations reduced poverty and improved climate-risk management.



Other work has shown that agricultural interventions that increase yields, may improve food security even with-
out providing significant cash-income to help households move out of poverty (Wanjala and Muradian 2013), suggest-
ing a need to consider own consumption of agricultural products. Work by Lunduka et al. (2017), showed that adop-
tion of drought resistant maize in South Africa improved both yields and income for farmers that adopted the drought-
resistant varieties. Our study complements studies such as these by showing how variation in yields across geography
and time in Mali are related to changes in household consumption patterns. Our findings also contribute to understand-
ing the degree of adaptation and resilience that already exists in the Malian context, and in so doing, begin to deter-

mine the amount that will be necessary given the progression of climate change.

2 Context and Data

Mali is a low-income economy in West Africa that is heavily dependent on agriculture, which makes up approximately
38% of national GDP (World Bank 2022), while 5.3% of Mali’s land is arable USAID (2022). The GDP per-capita as
of 2022 is $833 ( World Bank 2022) with around 80% of the population making a living based off of agriculture (In-
ternational Trade Administration 2022), the overwhelming majority of this being done via smallholder farms (Giller et
al. 2021). The fertile lands of Mali lie within an arid agro-ecological zone (Giller et al. 2021), with agricultural activities
are heavily based around the Niger River in the south of the country and the surrounding fertile land (USAID 2022).
Mali’s main crops are cotton, corn, millet, sorghum, tobacco, and rice (International Trade Administration 2022). The

country is divided into 704 administrative communes.

2.1 Data
2.1.1 Household expenditure data

In our study, the source of the household data that we use is the “L’Enquete Modulaire et Permanente Aupres Des
Menages” (EMOP) or “The Modular and Permanent Study of Households” dataset for the years 2011, 2013-16, and
2018-2019, conducted by “L’Institut National de la Statistique” (INSTAT), the Malian National Statistics Institute.

Each year, the survey interviews roughly 6,000 households who are visited once per-quarter. Households are asked for
detailed breakdowns of their food and non-food expenditure, while also being asked questions on the demographic makeup
of the household such as the age and gender of household members. This dataset gives us access to household expendi-
ture and demographic information throughout each year, across Mali. In our dataset we have households from 596 of

Mali’s 704 communes, including observations from communes affected by violence.?

2. INSTAT employs outside consultants, locally based enumerators, who can access communes outside of government control so that they
are able to collect data in places that rebel groups control. Note that there was no data collection in 2012 because of a Coup d’Etat, but
other years data was collected even during violence and political unrest through the use of local enumerators.



2.1.2 Vegetation Index Data

For our proxies of agricultural yields, we make use of the Landsat and MODIS sensors to provide Vegetation Indices(VI).
In this study we use VIs across much of Mali and during a period spanning almost a decade. Within the literature,

work using VIs to predict yields in smallholder systems has been hampered by a a lack of high resolution imagery up
until fairly recently. Burke and Lobell (2017) explained that because of the small size of smallholder fields in Sub-Saharan
Africa, as well as irregular boundaries, sensor systems such as Landsat, which operates at a relatively high resolution of
30m, have difficulty obtaining accurate crop information. Familiy Farming Knowledge Platform: Smallholders Data-
portrait (2017) found across a sample of 7 African countries that the average field size was roughly 2 hectares, however
this masked significant heterogeneity. Carletto, Gourlay, and Winters (2015) found in a survey of 4 African countries
(Malawi, Uganda, Tanzania, and Niger) that around 25% of fields were less than 0.5 acre in size, and more than 50%

were less than 1 acre, and more than 80% less than 2 acre.

We benefit from the fact that on average, Malian fields tend to be larger than in many other countries in Sub-
Saharan Africa (Giller et al. 2021). Similar findings from Harris, Oduol, and Hughes (2021) show in a sample of 6 African
countries that median farm sizes ranged from 0.63 hectares in Ethiopia to 7 hectares in Mali, with a mean of 9.15. Giller
et al. (2021) found that in the Cotton Basin of Mali, the median amount of cultivated land per household was 10 hectares.
Lobell (2013) found that the spatial resolution of (30m x 30m) used by the Landsat sensor is sufficient to delineate indi-

vidual fields that are roughly 1ha in size or greater.?

Table 1: Summary Statistics on Per-Capita Annual Expenditures for Malian Households (CFA Francs)

Consumption Type N Mean St. Dev
Total Consumption 40,786 125,622.200 105, 497.600
Total Food Consumption 40, 786 113,078.600 96, 934.800
Total Non-Food Consumption 40,786 12,543.610 17,680.180
Grain Consumption 40,786 30,519.200 29,946.660
Grain Auto-Consumption 40, 786 19, 354.760 22,156.040
Grain Gift Consumption 40, 786 853.391 6,164.517
Purchased Grain Consumption 40, 786 10, 311.050 21,654.650
Rice Consumption 40,786 27,280.480 34,960.610
Meat Consumption 40,786 6,624.260 15,978.760
Clothing 40,786 5,618.586 7,049.144
Housing 40, 786 742.681 2,311.587
Education 40,786 170.401 3,700.361
Communication 40,786 951.578 1,979.805

Our preferred proxy for yields is GCVI, but we also run regressions with NDVT as a robustness checks. Calculation
of GCVT is based on reflection in in the Near Infrared (NIR), and green wavelength spectrums, while NDVT is based on
the NIR and red wavelengths. The formula for GCVI is the following:

3. In recent years, studies such as Azzari, Jain, and Lobell (2017), Lobell et al. (2015) and Lobell et al. (2019) have proposed methods for
yield prediction based on the Sentinel-2 sensor that produce images at a resolution of (10m x 10m). The Sentinel-2 system’s first available
images are in 2017, since our study period for collecting VIs begins in 2010 and ends in 2019, we have opted to use the Landsat system for
all years of our project.



GCVI = (NIR/Green) — 1, (1)

where NIR is the amount of light reflected in Near-Infrared spectrum, and Green is the amount of light reflected in the

green spectrum. The formula for NDVI is given by:

NDVI = (NIR — Red)/(NIR + Red), (2)

where Red is the amount of light reflected in the red spectrum. NDVI ranges between -1 and 1, with negative values
indicating clouds and water, values near 0 indicating bare soil, values from 0.1-0.5 indicating sparse vegetation, and val-
ues of 0.6 and higher indicating dense vegetation. GCVI is not standardized and so there is no consistent interpretation
of obtained values, though our calculations range from slightly above 0 to roughly 5.2. We can view the distribution of
values for GCVI across communes of Mali in the images below. In order to calculate the values of the vegetation indices
for each commune, we overlay the satellite images with an administrative shapefile of Mali’s communes that we obtain

from the Global Administrative Areas (GADM) database.

In calculating the commune-level value of GCVI for a particular growing season, we follow the approach of Becker-
Reshef et al. (2010). We set the growing season as lasting from May 1st to October 1st of each year and then using
GEE and the administrative shapefile of Malian communes, we obtain images in between those dates in 16 day inter-
vals for every commune in Mali from the Landsat sensor. For each pixel in a particular commune, we take the maxi-
mum value of GCVI from images taken during the growing season. Then, within each commune, we take the mean of
the maximum values of GCVTI across all pixels to obtain a Mean of the Maximum GCVI for a particular commune for
the growing season. This gives us a measure of GCVI for almost every Malian commune for every growing season from
2010 to 2019.*

4. Unlike Becker-Reshef et al. (2010), who predict yields of a specific crop, wheat, we do not weight pixels according to a crop filter. We
also do not adjust our maximum GCVI values by subtracting the average of the minimum 5th percentile values of GCVI, as they did. We
do apply cloud masks to our images in order to remove pixels that have particularly heavy cloud cover, as the presence of clouds can result
in erroneous calculations of a VI. Once this procedure is finished we have a dataset of Averaged Maximum GCVI values. For the year 2010
we were lack Averaged Maximum GCVI values for 40 communes. This may have been a result of gaps in Landsat coverage, or a particularly

rainy season causing thick cloud cover, which then resulted in pixels being removed by our cloud mask. We also had two communes without
GCVI values for 2011. Tests show no bias due to the missing commune GCVI values in 2010 and 2011.



Figure 1: GCVI Across Mali for the 2019 Growing Season
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Figure 1 demonstrates sizable variation in GCVI across communes within our example year, 2019, in the fertile
southern regions of Mali. This area is where the majority of the population lives and the majority of agricultural pro-
duction takes place. That variation is confirmed in Figure 2 which shows the standard deviation of GCVI across mali’s
704 communes across the years in our study. The relatively high variation in GCVI suggests its suitability to measuring
yields, which also exhibit high year to year variation in the Sahel. Table 2 shows the commune level GCVI summary

statistics, showing mean, standard deviation, and median.

Table 2: Commune-level GCVI Summary Statistics (2010-2019)

Statistic Value
Mean of Averaged Maximum GCVI Across Years 2010-2019 2.162
Standard Deviation of Averaged Maximum GCVI Across Years 2010-2019 1.002
Median of Averaged Maximum GCVI Across Years 2010-2019 1.986
Number of Observations 7,040

2.2 Do vegetation indices measure yields?

In order to verify the validity of our use of vegetation indices as proxies for agricultural output, we test for the corre-
lation of vegetative indices with field measured yields in Mali. To do so, we make use of yield data from World Bank
Living Standard and Measurement Survey (LSMS) data in Mali from 2014 and 2017 (Enquéte Agricole de Conjoncture
Intégrée aux Conditions de Vie des Ménages 2014 2016; Tiberti, Ponzini, and Djima 2019). These data include farmer
reported yield data and also includes the maximal seasonal NDVI for each enumeration area, or “grappe”, for which
there are over 900. For each household we aggregate the yields for millet, sorghum, and maize as our yield measure. We
then regress that yield on the NDVI value for the grappe reported by LSMS in that particular year.” We estimate the

relationship using the following 2nd degree polynomial specification as follows:®

log(Yigt) = aVy +v(Vge)* + €iges (3)

where Y4 represents yields in kilograms-per-hectare (kg/ha) ¢ in an enumeration area g in yeart, My maximum GCVI

in enumeration area g during the growing season of year ¢, and €;4¢ is an error term for the enumeration area.

The results shown in Table 3 demonstrate that there is a strong relationship between NDVI and crop yields for the
LSMS data. This result demonstrates a countrywide analogue to the results in Lobell et al. (2019) which shows simi-
larly strong correlations of satellite and ground based crop yield measurement for a 400 sq km area of Eastern Uganda.
This strong effect of NDVI on yields in the Mali LSMS data also demonstrates a strong parabolic relationship. There-

5. The LSMS data collection procedure included pulling NDVI estimates, but did not include the corresponding GCVI estimates, which
is our preferred measure. As shown in the appendix there is a high correlation between them, so we think this provides a reasonable test for

our purposes.
6. Tests with linear models, higher level polynomials, and log-log specifications fit the data less well than this specification.
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fore, in implementing our expenditure estimation, we specify a model with a 2nd degree polynomial of GCVI. We make
use of GCVI in the main specification for our study because it has been found to be more accurate in small-holder farm-

ing systems, but our data show a strong correlation between NDVI and GCVI (.71) across our study period.

Table 3: Yields(Kg/Ha) of Millet, Maize and Sorghum and
Log Seasonal NDVI 2014 and 2017

Dependent variable:
Log Yields (Kg/Ha)

Log of NDVI 23.724***
(1.741)
Square of Log NDVI —12.306***
(1.741)
Observations 4,678
R? 0.048
Adjusted R? 0.048

Notes: Millet, Sorghum, and Maize are the principal consumption crops
grown in Mali. In this regression, we use the log of the maximum annual
NDVI for a particular district.

3 Empirical Approach

Our empirical approach relates commune level GCVI values with household expenditure outcomes. Given that the
growing season begins in May, and ends in October, it is reasonable to expect that household expenditure in the first
half of the year is impacted by the quantity of the previous growing season’s harvest. We are able to observe household
consumption in all 4 quarters of the year, and therefore are able to observe how expenditure may change as the out-
come of the current-year growing season influences expenditures and home consumption. This allows us to treat our
data as a panel in which we have two observations for each household. We average expenditure for the first two quar-
ters of the year, and do the same for the last two quarters to create two half-year average expenditure values per house-
hold.” Average expenditure for the first half of the year is then regressed on the commune-level average of maximum
GCVI for the previous growing season, while expenditure for the second half of the year is regressed on that year’s

growing season.
Our main empirical specification is given by the following equation:

THS(Y;jnt) = alog(M;i) +v(log(M;1))? + Ap + ¢4 + i + €ijnes (4)

where Y1, is the Inverse Hyperbolic Sine (IHS) Transformation of per-capita average quarterly expenditure of a house-

hold i in a commune j in half-year h in year ¢, M}, is within-commune averaged maximum GCVI in commune j during

7. Results are robust to using each quarter, but the half year averaging allows us more non-zero observations for less frequently purchased
goods.
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the growing season of year t , u; is a household fixed-effect, Ay is a half-year fixed-effect, ¢; is a year fixed effect, and
€ijne is a commune-level clustered standard error. For calculating per-capita expenditure we use the OECD-Modified
Scale (Hagenaars, Zaidi, and Vos 1994), which adjusts household size on an adult equivalent basis. Although our main
expenditure measures are well above zero, we use the THS Transformation in order to address zero values for expendi-
ture that are quite common for non-food items in this dataset. We choose the same functional form for the dependent

variables across all models for consistency.®

Our identification strategy relies on geographic variation in the levels of GCVI across communes for a particular
growing season, as well as variation in GCVI for communes between different years. The key assumption is that condi-
tional on household, year, and half-year fixed effects, commune-level averaged maximum GCVI is not correlated with
the error terms. In other words, our assumption is that unexplained household differences in expenditures are unrelated

to the commune level measured vegetation indices.

4 Results

The main results in Table 4 demonstrate a significant relationship between expenditures of rural Malian households due
to changes in averaged maximum GCVI across years and communes.” Both the linear and quadratic terms are signifi-
cant in all three regressions and suggest an inverted U-shape in which expenditures are increasing at mean GCVI (2.16)
and beyond one standard deviation in a positive direction. The effects on total expenditures and food expenditures are
similar, while those on non-food expenditures are more than twice the level of the others. This suggests increments of
income from higher yields being spent on non-food items as opposed to food expenditures, in a manner consistent with
Engle curves. The coefficients and implied elasticities on total, food, and non-food expenditure in Table 4 show remark-
able levels of resilience of Malian rural households to changes in agricultural yields. In contrast to the general expec-
tation that agricultural yields might share a one-to-one elasticity with consumption, these estimates suggest that on
average the elasticity between yields and overall per-capita expenditure is roughly 0.04. The elasticities do differ for ex-
penditure sub-categories, with the elasticity for food expenditure being lower at 0.02, and the expenditure for non-food
consumption a much higher 0.23. '° All of these elasticities suggest that the broad categories are normal goods with

increases in agricultural yields increasing their purchases.

8. The results for non-zero dependent variables are essentially unchanged if we instead use the logarithm of the dependent variable. They
are, however, sensitive to this choice for expenditures with large numbers of zero values.

9. The appendix shows these results for urban households as a robustness/placebo check. Results are significantly muted for urban resi-
dents who are less likely to depend on agriculture, despite a substantial number of urban residents reporting consumption of home produced
food products.

10. Following the spirit of the derivations in Bellemare and Wichman (2020), elasticities for the functional form in equation (4) are given

by the expression:
Vy2+1
ya = (L> (a T 2~wn(z)).

Y
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Table 4: Relationship Between GCVI and Per-Capita General Expenditure - Rural Households

(1) (2) (3)

Total Expenditure Total Food Expenditure Total Non-Food Expenditure
Log GCVI 0.100%** 0.089*** 0.340%**
(0.022) (0.023) (0.048)
Square of Log GCVI —0.041%** —0.043** —0.071**
(0.016) (0.017) (0.032)
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes

When we break down rural food expenditure into some of its components, in Table 5, we see that increases in the
commune-level mean of maximum GCVI are associated with statistically significant increases in spending on meats but
not grain or rice. This suggests a shift towards luxury and more nutritious consumption, consistent with Bennett’s law.
There being no statistically significant change in total grain or rice consumption, is also suggestive of the resilience lev-
els we see in which changes in yields may be accounted for by changes in net grain storage or Engle curve effects in
which consumption of the staple grain stays constant. To test how yields effect own consumption, purchases, and gift
receipts, we then divide the expenditures on grain (millet, sorghum, and maize) and rice into ”auto” (own consumption
produced by the household), purchased, and gifted.!! Table 6 shows that the expenditure values of self-produced grains
and rice decrease with averaged maximum GCVI, suggesting increased market sales. Conversely, there are statistically
significant increases in expenditures on purchased and gifted grains and rice. These effects may be due to households
diversifying their types of carbohydrate consumption, substituting purchased higher quality grains, while selling their

own grain on the market.'?

11. The survey procedure valued self-produced and gifted agricultural products at the local market price, such that they should be equiva-
lent to purchases. The ”gift” measure only accounts for gifts received, not gifts given out, nor net gifts.

12. We are unable to measure price effects, which may also lead to these differential effects. But in order for price effects to cause this pat-
tern, we would have to see differential effects on prices for own produced and market purchased grains or rice, which we think is unlikely to
have happened.
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Table 5: Relationship Between GCVI and Per-Capita Food Expenditure
by Food Category

(1) (2) (3) (4)

Total Food Grain Rice Meat
Log GCVI 0.089*** —0.083 —0.039 0.447**
(0.023) (0.125) (0.160) (0.194)
Square of Log GCVI —0.043** 0.053 0.073 —0.103
(0.017) (0.089) (0.108) (0.145)
Year FE Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and
non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered
at the commune level. Per-capita expenditure outcome values for each semester/half-year are the average of the values within
each quarter of a half-year, with household size determined based on OECD equivalence scales. GCVI is calculated based on the
averaged maximum seasonal GCVTI across pixels within a commune.

Table 6: Relationship Between GCVI and Per-Capita Grain and Rice Expenditure
by Expenditure Types

(1) (2) 3) (4) (5) (6)
Grain (auto) Grain (buy) Grain (gift) Rice (auto) Rice (buy) Rice (gift)

Log GCVI —1.090*** 1.468*** 0.419*** —1.039*** 0.608** 0.345***
(0.209) (0.314) (0.093) (0.311) (0.304) (0.103)
Square of Log GCVI 0.450*** —0.638*** —0.125** —0.245 —0.130 —0.146**
(0.149) (0.205) (0.056) (0.213) (0.197) (0.062)
Year FE Yes Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-
food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the
commune level. Per-capita expenditure outcome values for each semester/half-year are the average of the values within each quarter
of a half-year, with household size determined based on OECD equivalence scales. GCVI is calculated based on the averaged maxi-
mum seasonal GCVTI across pixels within a commune.

In Table 7 and Table 8 we show expenditures on non-food sub-categories. While per-capita total non-food expen-
diture is increasing in the average maximum of GCVI, the signs and magnitudes of the coefficients across sub-categories
vary considerably. In Table 7 we see only clothing expenditures significantly changing due to changes in GCVI. We see
a strong positive elasticity of clothing expenditures to higher yields (0.57 at mean GCVI), as would be expected of a
normal consumption good. Other expenditure types alcohol, health and housing show no effect of higher yields.'? In
Table 8 we see strong positive effects of GCVI on communication expenditures (cellphone and internet minutes) and on
the residual other non-food categories.!* In contrast, education and restaurant expenditures go down with higher lev-
els of GCVI. While the restaurant expenditures drop could be due to higher own production of food, we do not have a

13. Mali is a more than 90% Muslim country, so it is consistent to see no effects on alcohol.

14. Communication expenditures are the least likely of the measures we have to change due to localized inflation. Cellphone minute costs
are decided nationally and so expenditures would only go up when the quantity of minutes went up.
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good explanation of lower education expenditures.'® Overall, the non-food expenditure results are strongly suggestive
of GCVI being related to rural incomes, Malian households being resilient to yield shocks, and rural households spend-

ing more on normal goods when GCVI is higher.

Table 7: Relationship Between GCVI and Per-Capita Non-Food Expenditure Categories I

(1) (2) (3) (4) (5)

Total Non-Food Alcohol Health Clothing Housing
Log GCVI 0.340*** —0.063 —0.054 1.139*** —0.094
(0.048) (0.156) (0.125) (0.108) (0.130)
Square of Log GCVI —0.071** —0.113 0.183** —0.372%** —0.126
(0.032) (0.099) (0.085) (0.075) (0.095)
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-
food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the
commune level. Per-capita expenditure outcome values for each semester /half-year are the average of the values within each quarter
of a half-year, with household size determined based on OECD equivalence scales. GCVI is calculated based on the averaged maxi-
mum seasonal GCVI across pixels within a commune.

Table 8: Relationship Between GCVI and Per-Capita Non-Food Expenditure Categories I1

(1) (2) (3) (4) (5)

Education Communication Transportation Restaurants Other Non-Food
Expenditure

Log GCVI —0.743*** 0.332%** —0.060 —0.207*** 0.704***

(0.120) (0.095) (0.137) (0.057) (0.116)
Square of Log GCVI 0.528*** —0.148** 0.059 0.147** —0.127

(0.087) (0.062) (0.090) (0.058) (0.079)
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-
food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the
commune level. Per-capita expenditure outcome values for each semester/half-year are the average of the values within each quar-
ter of a half-year, with household size determined based on OECD equivalence scales. GCVI is calculated based on the averaged
maximum seasonal GCVI across pixels within a commune.

4.1 Robustness Checks

One potential threat to the quality of our estimates is mis-measurement of yields due to using GCVI rather than NDVI.
We therefore conduct a series of robustness checks using the commune-level averaged maximum NDVI. Because the
range of NDVI values is smaller than that of GCVI, we would expect the magnitudes of the coefficients to be larger

in the NDVI regressions than in those for GCVI if they capture similar changes in vegetation health across Mali. For

15. It is possible that education expenditures are mis-measured or measured on the wrong timescale due to their being more like durable
goods. One pays once a year for education, which might lead to spurious correlations with yields.
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the big three categories of general expenditure in Table 9, the coefficients on the average of maximum of NDVI are
positive and statistically significant, even while they are larger in magnitude than in Table 4. Similar to GCVI, the
strongest effect by far is for per-capita non-food expenditure in column 3. When we calculate elasticities of expenditure
to yields, we find larger implied elasticities than for GCVI of 0.44 for all expenditures, 0.42 for food, and 0.89 for non-
food. These still show the remarkable levels of resilience of Malian households in which a 1% change in yields produces

a less than 1% change in expenditures.

Table 9: Relationship Between NDVI and Per-Capita Expenditure - Rural Households

(1) (2) (3)

Total Total Food Total Non-Food
Log of NDVI 0.731*** 0.731**" 0.925**"

(0.154) (0.166) (0.267)
Square of Log NDVI 0.252"** 0.268"** 0.029

(0.075) (0.081) (0.148)
Observations 40,898 40,898 40,898
R? 0.857 0.847 0.819
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and
non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clus-
tered at the commune level. Per-capita expenditure outcome values for each semester/half-year are the average of the values
within each quarter of a half-year, with household size determined based on OECD equivalence scales. NDVT is calculated
based on the averaged maximum seasonal NDVI across pixels within a commune.

We also test estimates for the break down of food expenditures by type and of non-food expenditure by type using
NDVT as our variable of interest. These are shown in appendix A3. The results there are broadly similar to the results
with GCVI, with some differences in emphasis. Among food types, rice expenditures increase, while there is no statisti-
cally significant effect on meat expenditures. We also see similar expenditure dynamics play out in Table 22 as with the
breakdowns of spending on grain and rice shown above. The coefficients on NDVT for auto-consumption of grain and
rice are both negative and statistically significant, while the coefficients in the regression on purchased grain and rice

are both statistically significant and positive.

In Non-Food Consumption we see similar trends with NDVI as to those with GCVI. The coefficient on regressions
of per-capita clothing expenditures in columns 4 of Table 23 is statistically significant and positive. The sign is negative
and statistically significant for housing in contrast to the GCVI regressions. In general, we find that in terms of statis-
tical significance, and the signs of coeflicients that regressions of per-capita expenditure on average maximum NDVT are

similar to those for our GCVI regressions.
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4.2 Comparisons to Night Lights

In order to test how GCVI compares as a correlate of household expenditure in rural Africa to the commonly used
nightime light emissions measures (henceforth “night lights”), we replace GCVI with night light measures from the
same communes in our regressions of household expenditures. There is an extensive literature that exploits remotely
sensed measures of nightlight intensity as proxies for outcomes such as GDP, household welfare, and overall economic
development (Gibson et al. 2021; Gibson, Olivia, and Boe-Gibson 2020; Ivan et al. 2020). That literature, however,

raises some questions as to whether night lights are effective in measuring incomes in rural areas particularly in Africa.

To measure night lights, we use the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB)
dataset for this analysis because it has been shown to significantly outperform the other major source of nightlight
data, the Defense Meteorological Satellite Program (DMSP). At the same time, Gibson et al. (2021) showed that data
from VIIRS performed relatively poorly in rural areas with lower population densities, the same types of locales which
we focus on for our study. We obtain our VIIRS data from the Google Earth Engine.'® From VIIRS, a we produce a
quarterly composite image for each commune during each year. This composite provides the average radiance observed
from each pixel.!” Following the methodology of Ivan et al. (2020), we then take the sum of each pixel in each com-
mune for a particular quarter of the year to get the total commune radiance for that quarter. We then take the loga-

rithm of the sum of quarterly night lights, to produce a measure akin to our vegetation indices.

The summary statistics for VIIRS night lights in Mali are presented in table Table 10 along with the correlation
between nightlights and GCVI. The VIIRS data show a high standard deviation, driven by differences between ur-
ban areas, such as the capital Bamako, and desert areas with no population and functionally no lights. In addition the
median is much lower than the average. The VIIRS data shows a very low negative correlation with GCVI of 0.07, al-

though that correlation is statistically different from zero.

In general, the VIIRS data demonstrate very little variation in night lights across Mali outside of the major urban
center of Bamako as we can see in Figure 4, which maps the standard deviation of VIIRS across the country. This low
variation in rural Mali is in line with the findings of papers such as those by Gibson et al. (2021) and Gibson, Olivia,
and Boe-Gibson (2020). Keola, Anderson, and Hall (2015) argue that nighttime lights are not a good predictor of growth
of agricultural value-added. They found that the elasticity of nighttime lights on GDP was negative for countries with
an agricultural share between 20% and 40%, with an insignificant relationship for countries with an agricultural share
of GDP above 50%. This further suggests that nighttime lights may not be effective proxies of economic activity in ru-
ral regions, which we also observe in our own results. Figure 5 shows that there is an overall negative correlation be-

tween semesterly nightlights and GCVI. A visual inspection of the relationship also shows little consistent correlation

16. There are two versions of the VIIRS dataset available, one dataset which removes data contaminated by stray light which came online
in 2012, and another that corrects for stray light, which came online in 2014. We use the first dataset since it better covers the years of our
study.

17. Radiance is measured in nanoWatts per centimeter squared per steradian.
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between these two measures.

Table 10: Summary Statistics For VIIRS Night Light Radiance Data in Mali

Statistic Value
Average of The Sum of Quarterly Radiance 2012-2019 266.88
Standard Deviation of The Sum of Quarterly Radiance 2012-2019  1858.71
Median of The Sum of Quarterly Radiance 2012-2019 56.01
Number of Observations (Quarterly) 21824
Correlation Between Semesterly Nightlight Radiance and GCVI -0.07
t-Statistic -7.0152

Figure 4: Across Years Standard Deviation of Average Commune-Level Nightlight Radiance

Nightlights Standard Deviation Across Years 2012-2019

B
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Correlation Between Log Sum of Night Lights and Log GCVI

Correlation Between the Log Sum of Nightlights & Log GCVI
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Figure 5

4.3 Regression results using VIIRS

Night lights perform significantly differently than GCVI and NDVI when we use it as a right hand side variable in our
regressions of household expenditure in Mali. In Table 11, the coefficient on the log of the sum of night lights is in-

significant for total, food, and non-food expenditures, though the coefficient on the quadratic is statistically significant
and negative in the non-food expenditure regression. In addition the coefficients are very small relative to those of the

vegetation indices, which suggests no economically significant relationship between VIIRS and any of our household ex-

penditure measures for rural Mali.'®

In Table 12 and Table 13 we break down food expenditure categories as we did for GCVI and find similarly small
or insignificant effects as the main VIIRS regression. As with the overall expenditure results, the coefficients are much

closer to zero than in the regressions for either of the vegetation indices.

18. We find similarly small and insignificant coefficients if we run these regressions using urban households and urban commune average
VIIRS values. Results available from the authors on request.
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Table 11: Relationship Between Radiance and Per-Capita General Expenditure - Rural Households

(1) (2) 3)
Total Expenditure Total Food Expenditure Total Non-Food Expenditure
Log Radiance 0.004 0.008 0.042*
(0.015) (0.018) (0.024)
Square of Log Radiance —0.005** —0.004 —0.017**
(0.002) (0.002) (0.003)
Observations 62,502 62,502 62,502
R2? 0.590 0.572 0.605
Year FE Yes Yes Yes
Quarter FE Yes Yes Yes

Notes: Radiance is measured in nanoWatts per square centimeter per steradian (nW/(cm?-sr)). Dependent variables are the in-
verse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures. All regressions have
household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune level. Per-capita expenditure
outcome values for each semester/half-year are the average of the values within each quarter of a half-year, with household size
determined based on OECD equivalence scales.

Table 12: Relationship Between Radiance and Per-Capita Food Expenditure
by Food Category

(1) (2) (3) (4)

Total Food Grain Rice Meat
Log Radiance 0.008 0.078 0.098 0.094
(0.018) (0.081) (0.104) (0.103)
Square of Log Radiance —0.004 —0.004 —0.006 —0.026**
(0.002) (0.009) (0.014) (0.013)
Observations 62,502 62,502 62,502 62,502
R? 0.572 0.575 0.571 0.572
Year FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes

Notes: Radiance is measured in nanoWatts per square centimeter per steradian (nW/(cm?-sr)). Dependent variables are the
inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures. All regressions
have household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune level. Per-capita
expenditure outcome values for each semester/half-year are the average of the values within each quarter of a half-year, with
household size determined based on OECD equivalence scales.
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Table 13: Relationship Between Radiance and Per-Capita Food Expenditure
by Expenditure Types

1) (2) 3) (4) (5) (6)
Grain (auto) Grain (buy) Grain (gift) Rice (auto) Rice (buy) Rice (gift)

Log Radiance 0.065 0.174 —0.042 —0.256™" 0.063 —0.021

(0.117) (0.132) (0.037) (0.113) (0.116) (0.028)

Square of Log Radiance 0.010 —0.026 0.012** 0.028™ —0.006 0.003

(0.016) (0.018) (0.005) (0.015) (0.016) (0.003)

Observations 62,502 62,502 62,502 62,502 62,502 62,502

R? 0.690 0.571 0.491 0.620 0.587 0.397
Year FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes

Notes: Radiance is measured in nanoWatts per square centimeter per steradian (nW/(ecm?-sr)). Dependent variables are the in-
verse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures. All regressions have
household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune level. Per-capita expenditure
outcome values for each semester/half-year are the average of the values within each quarter of a half-year, with household size de-
termined based on OECD equivalence scales.

When we move to non-food expenditure for rural households in Table 14 and Table 15, we do observe a few more
plausible correlations of expenditures with the night light measure. The regressions in Table 14 show statistically signif-
icant and positive effects for health and clothing expenditures. Such effects would be consistent with places with more
markets and health centers, that likely have more lights, having higher expenditures on these categories. One might ex-
pect similar effects in communication, transportation, restaurant expenditures, but Table 15 shows that there is no such
significant relationship. We do find a negative coefficient on education that mirrors the one found for GCVI, although
it is only significant at the 10% level. Overall, although the non-food consumption coefficients look more plausible, the

correlation between night lights and household expenditure in rural Mali is not a strong one.

Table 14: Relationship Between Radiance and Per-Capita Non-Food Expenditure Categories I

(1) (2) 3) (4) (5)

Total Non-Food Alcohol Health Clothing Housing

Log Radiance 0.042* 0.010 0.186™" 0.260"** —0.048

(0.024) (0.066) (0.074) (0.072) (0.067)

Square of Log Radiance —0.017*** —0.008 —0.041*** —0.055""* —0.001

(0.003) (0.009) (0.010) (0.010) (0.008)

Observations 62,502 62,502 62,502 62,502 62,502
R? 0.605 0.661 0.547 0.483 0.796
Year FE Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes

Notes: Radiance is measured in nanoWatts per square centimeter per steradian (nW/(cm?-sr)). Dependent variables are
the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures. All
regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune
level. Per-capita expenditure outcome values for each semester/half-year are the average of the values within each quarter
of a half-year, with household size determined based on OECD equivalence scales.
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Table 15: Relationship Between Radiance and Per-Capita Non-Food Expenditure Categories 11

1) (2) 3) (4) (5)
Education Communication Transportation Restaurants Other Non-Food Expenditure

Log Radiance —0.143" 0.028 0.073 —0.027 —0.050

(0.080) (0.056) (0.065) (0.033) (0.056)

Square of Log Radiance 0.018" —0.0001 —0.025"* 0.003 0.005

(0.010) (0.007) (0.009) (0.004) (0.007)

Observations 62,502 62,502 62,502 62,502 62,502

R? 0.553 0.661 0.708 0.751 0.746
Year FE Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes

Notes: Radiance is measured in nanoWatts per square centimeter per steradian (nW/(cm?-sr)). Dependent variables are the
inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures. All regressions
have household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune level. Per-capita
expenditure outcome values for each semester/half-year are the average of the values within each quarter of a half-year, with
household size determined based on OECD equivalence scales.

5 Conclusion

This work has demonstrated the use of vegetation indices as a proxy for yields across an African country in order to
analyze the relationship between agricultural output and household expenditures. Our findings show a strong positive
relationship between vegetation indices, including our preferred index, GCVI, and overall per-capita expenditure in ru-
ral Mali. The results we find show a strong level of resilience of Malian households to changes in agricultural yields, as
proxied by either GCVI or NDVI. The effects we found are primarily driven by changes in expenditures on non-food
items, though there are noticeable changes in the composition of food expenditure. We see stronger effects for rural

households compared to urban households, suggesting these results are indeed related to agricultural yields.

In terms of specific types of food consumption for rural households with increases in GCVI, we see evidence of
shifts towards spending on “luxury” foods such as meat and rice, consistent with Bennett’s law. We also observe de-
clines in the expenditure value of consumption of self-produced grains and increases in expenditure on purchased grains
and rice, as well as the expenditure value of grain and rice gifts received by households. A good part of the increase in
overall per-capita expenditure for rural households associated with increases in GCVI comes through non-food expen-
diture, particularly increases in spending on communication and clothing. Overall, our results demonstrate a high level
of household resilience among rural Malian households in the face of changes in agricultural output. This resilience of
rural households suggests the need for more in depth work on the types of resilience and whether the resilience efforts

are sustainable.

When we try to substitute the vegetation indices with night light data, which is often used as a proxy for income,
we do not find sensible results. We find the VIIRS night light measure poorly and negatively correlated with our mea-

sure of yield, GCVI, and almost unrelated to most household expenditure, either in aggregate or by category. This sug-
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gests that, at least for rural Africa, researchers should use caution in using night light data as a proxy for income or

expenditure.

We have demonstrated the potential efficacy of remotely sensed vegetation indices as proxies for yields in the ab-
sence of reliable in-field measures. Furthermore, we have also shown that these yield proxies can then be utilized to
quantify changes in household consumption expenditures resulting from variation in agricultural output, and thereby
be used for climate resilience measurement. The methodologies and techniques we used here have the potential to be of
great use in work to understand the impacts of Anthropogenic Climate Change on agricultural activities in parts of the

world with poorly measured yields, and on the welfare of households that rely on these activities.
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Appendix

A1l: Vegetation Indices

There are a number of different vegetation indices used in specific contexts or for certain kinds of plants. We examine
how the values of for several of theses indices compare in the Malian setting. In addition to the GCVI and NDVI which
are the indices we use in our expenditure regressions, we also employ consider the Green Normal Differenced Vegetation

Index (GNDVI), as well as the Enhanced Vegetation Index (EVI).

For GCVI and GNDVI, we use the Landsat sensor, and for NDVI and EVI we use the MODIS sensors. MODIS op-
erates at a (250m x 250m) spatial resolution and a 16-day temporal resolution. The system provides built-in functions
for calculating NDVI and EVI, but lacks the sensors to calculate GCVI and GNDVI. For Landsat, we use the Landsat
7 between 2010 and 2012, and Landsat 8 between 2013 and 2018, as Landsat 8 did not come online until 2013. We cal-
culate the indices using Google Earth Engine (GEE). While the sensors we use may differ in spatial resolution, we find
considerable correlation between the various available vegetation indices, as can be viewed in the appendix Figure 7.
That figure shows the correlation across GCVI, GNDVI, NDVI, and EVI. As expected, correlations are strongest be-
tween indices that are based on reflection in the same wavelengths, with the green and NIR indices GCVI and GNDVI

having a correlation coefficient of 0.97. The red and NIR based indices, NDVI and EVI, share a coefficient of 0.99.

Figure 6: Correlation Between Vegetation Indices
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Correlations dip noticeably when comparing those indexes that do not rely on the same wavelengths, such as GCVI

and NDVI, which share a correlation of .71. However, the indexes broadly follow similar patterns.

A2: Urban Households Regressions

We expect to find that urban household expenditure would be less elastic with respect to changes in averaged maxi-
mum GCVI, since fewer households in urban regions rely on agricultural activities for income or auto-consumption. As
such, these urban regressions can be seen as either a placebo test or as a robustness check. Our results for households
in urban communes are in line with expectations. For per-capita total expenditure, and per-capita food expenditure,
the coefficients on the mean of maximum GCVI are positive but statistically insignificant. The coefficient for the regres-
sion of per-capita non-food expenditure on GCVI is positive and statistically significant, with the magnitude less than
that of the rural sample Table 18. The regressions for per-capita expenditure of grain and rice both yield statistically
insignificant coefficients, a sharp contrast with our findings for rural households. The coefficient is positive and statisti-
cally significant at the 10% level for per-capita meat expenditure. This value is statistically significant at the 5% level

for our rural sample.

With respect to non-food expenditure for urban households, we see some adjustments that are similar to those of
rural households, and also some that differ. Increases in average maximum GCVI are associated with statistically sig-
nificant increases in per-capita expenditure on clothing and health similarly to rural households, as well as a decrease in

per-capita expenditure on housing. Other results are insignificant.

Table 16: Relationship Between GCVI and Per-Capita General Expenditure - Urban

(1) 2) (3)

Total Expenditure Total Food Expenditure Total Non-Food Expenditure
Log GCVI 0.075** 0.052* 0.260***
(0.034) (0.030) (0.083)
Square of Log GCVI —0.067** —0.073*** —0.069
(0.028) (0.026) (0.066)
Year FE Yes Yes Yes
Half-Year FE Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food ex-
penditures, and non-food expenditures. All regressions have household fixed effects, year and half year fixed
effects. Standard errors are clustered at the commune level. Per-capita expenditure outcome values for each
semester/half-year are the average of the values within each quarter of a half-year, with household size deter-
mined based on OECD equivalence scales. NDVI is calculated based on the averaged maximum seasonal NDVI
across pixels within a commune.
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Table 17: Relationship Between GCVI and Per-Capita Food Expenditure

by Food Category - Urban Households

(1)

(2)

(3)

(4)

Total Food Grain Rice Meat
Log GCVI 0.052* —0.271 0.086 0.437*
(0.030) (0.381) (0.185) (0.256)
Square of Log GCVI —0.073*** 0.245 —0.032 —0.278
(0.026) (0.303) (0.136) (0.212)
Year FE Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expendi-
tures, and non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Stan-
dard errors are clustered at the commune level. Per-capita expenditure outcome values for each semester/half-year are
the average of the values within each quarter of a half-year, with household size determined based on OECD equiva-
lence scales. GCVI is calculated based on the averaged maximum seasonal GCVI across pixels within a commune.

Table 18: Relationship Between GCVI and Per-Capita Non-Food Expenditure Categories I - Urban Households

(1)

(2)

(4)

(%)

Total Non-Food Alcohol Health Clothing Housing
Log GCVI 0.260*** —0.145 0.303 1.414%** —0.419***
(0.083) (0.169) (0.195) (0.325) (0.157)
Square of Log GCVI —0.069 0.029 0.041 —0.582** 0.109
(0.066) (0.150) (0.145) (0.246) (0.117)
Year FE Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures,
and non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors
are clustered at the commune level. Per-capita expenditure outcome values for each semester/half-year are the average
of the values within each quarter of a half-year, with household size determined based on OECD equivalence scales.

GCVT is calculated based on the averaged maximum seasonal GCVI across pixels within a commune.

Table 19: Relationship Between GCVI and Per-Capita Non-Food Expenditure Categories II - Urban Households

(1) (2) (3) (4) (5)
Education Communication Transportation Restaurants Other Non-Food
Expenditure

Log GCVI —0.971** —0.318 0.102 —0.121 0.386**

(0.425) (0.196) (0.127) (0.076) (0.172)

Square of Log GCVI 0.370 0.239* 0.091 0.118 —0.078

(0.310) (0.133) (0.104) (0.104) (0.112)
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-
food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the
commune level. Per-capita expenditure outcome values for each semester/half-year are the average of the values within each quarter
of a half-year, with household size determined based on OECD equivalence scales. GCVTI is calculated based on the averaged maxi-
mum seasonal GCVTI across pixels within a commune.
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For urban households, we find a statistically significant decrease in per-capita expenditure on education as GCVI
increases, which appears counter-intuitive. The strongest effect of our proxy for yields on education is seen in the seg-
ment of our sample that is least directly dependent on agricultural activities for income, which may suggest a price or
crowding out effect. It is also not immediately obvious why the effect of improved yields on education expenditures
would be negative. One possibility for why the effects of higher yields reduces education expenditure may be that im-
proved yields lead households to substitute away from investing in the education of their children, and towards having
their children assist in agricultural activities. It is also likely that some agricultural activities are still taking place in

communes classified as urban.

A3: Additional NDVI Data and Regressions

In this section we show summary statistics for NDVI and additional regressions using NDVI instead of GCVI, that mir-

ror the regression tables in the main text.

Table 20: Commune-level NDVI Summary Statistics (2010-2019)

Statistic Value
Mean of Averaged Maximum NDVI Across Years 2010-2019 0.570
Standard Deviation of Averaged Maximum NDVI Across Years 2010-2019  0.169
Median of Averaged Maximum NDVI Across Years 2010-2019 0.606
Number of Observations 7,040

Table 21: Relationship Between NDVI and Per-Capita Expenditure - Rural Households

(1) (2) (3) (4)
Total Food Grain Rice Meat
Log of NDVI 0.731*** 0.670 1.635" 0.339
(0.166) (0.711) (0.893) (1.382)
Square of Log NDVI 0.268"** 0.433 0.413 —0.231
(0.081) (0.411) (0.371) (0.753)
Observations 40,898 40,898 40,898 40,898
R2 0.847 0.750 0.737 0.744
Year FE Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures,
and non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors
are clustered at the commune level. Per-capita expenditure outcome values for each semester/half-year are the average of
the values within each quarter of a half-year, with household size determined based on OECD equivalence scales. NDVI is
calculated based on the averaged maximum seasonal NDVTI across pixels within a commune.
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Table 22: Relationship Between NDVI and Per-Capita Food Expenditure Categories I

(1) 2) 3) (4) () (6)

Grain (auto) Grain (buy) Grain (gift) Rice (auto) Rice (buy) Rice (gift)

Log of NDVI —5.386*** 7.323%** —0.998* —9.696*** 3.058** 0.248

(1.725) (1.778) (0.576) (2.007) (1.258) (0.531)
Square of Log NDVI —1.049 2.083** —0.698* —3.563*** 0.410 0.070

(0.705) (0.842) (0.356) (1.213) (0.691) (0.380)
Observations 40,898 40,898 40,898 40,898 40,898 40,898
R? 0.836 0.731 0.675 0.763 0.744 0.602
Year FE Yes Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-food expenditures.
All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the commune level. Per-capita expenditure
outcome values for each semester/half-year are the average of the values within each quarter of a half-year, with household size determined based on
OECD equivalence scales. NDVT is calculated based on the averaged maximum seasonal NDVT across pixels within a commune.

Table 23: Relationship Between NDVI and Per-Capita Non-Food Expenditure Categories I

(1) (2) 3) (4) (5)
Total Non-Food Alcohol Health Clothing Housing
Log of NDVI 0.925*** —1.413* 0.857 3.780"*" —2.945™**
(0.267) (0.851) (0.799) (0.653) (0.883)
Square of Log NDVI 0.029 —1.167"** 0.702* 0.602 —0.916™"
(0.148) (0.396) (0.367) (0.387) (0.452)
Observations 40,898 40,898 40,898 40,898 40,898
R?2 0.819 0.799 0.727 0.695 0.878
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expenditures, and non-
food expenditures. All regressions have household fixed effects, year and half year fixed effects. Standard errors are clustered at the
commune level. Per-capita expenditure outcome values for each semester /half-year are the average of the values within each quarter
of a half-year, with household size determined based on OECD equivalence scales. NDVI is calculated based on the averaged maxi-
mum seasonal NDVI across pixels within a commune.
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Table 24: Relationship Between NDVI and Per-Capita Non-Food Expenditure Categories 11

(1) (2) 3) (4) (5)

Education =~ Communication  Transportation  Restaurants  Other Non-Food

Expenditure

Log of NDVI —1.483** —0.416 0.543 0.841* 2.955%**

(0.742) (0.535) (0.787) (0.432) (0.739)
Square of Log NDVI —0.438 —0.444* 0.140 0.425** 0.570

(0.331) (0.260) (0.462) (0.209) (0.368)
Observations 40,898 40,898 40,898 40,898 40,898
R? 0.762 0.826 0.842 0.842 0.844
Year FE Yes Yes Yes Yes Yes
Half-Year FE Yes Yes Yes Yes Yes

Notes: Dependent variables are the inverse hyperbolic sine (IHS) transformation of all expenditures, food expendi-
tures, and non-food expenditures. All regressions have household fixed effects, year and half year fixed effects. Stan-
dard errors are clustered at the commune level. Per-capita expenditure outcome values for each semester/half-year are
the average of the values within each quarter of a half-year, with household size determined based on OECD equiva-
lence scales. NDVI is calculated based on the averaged maximum seasonal NDVI across pixels within a commune.
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